

Teaching Research Methodologies with a Robot in a CS Lab Course

Mathias Landhäußer, Sebastian Weigelt, Martin Blersch

KIT – Department of Informatics – Institute for Program Structures and Data Organization (IPD).

The Past

Educating Practitioners
Focus on Employability
[BCKM1997] [WR1999] [DSTWP2014]

The Present

Focus on Methodologies

Full-blown Approach: Conducting Research to Teach Research [B2005] [R2007] [KB2009] [BGBKBBR2016]

(Goals for) The Future

Educating Practitioners and Researchers Alike
Expose Students to Research as Early as Possible
Lower the Hurdles for Getting into Research

Lab Course: Programming in Natural Language

This is what we want the students to build.

Hey Gizmo, follow the black line, quickly. Then turn around slowly.

Translation Engine

Lego Mindstorms Robot "GIZMO"

- GIZMO Grammar Identification Zombie with a Monstrous Ontology
- Technical Data:
 - Size: 244mm x 183mm x 321mm
 - Powered by a Lego Mindstorms EV3 Brick
 - ARM 9 processor
 - 64 MB RAM, 16 MB flash disk
 - 1x USB 2.0 port
 - 178x128 pixel display (monochrome)
 - 4 push buttons
 - 4x ports for actuators and sensors (each)
 - Battery: 2050 mAh
 - 2x (independent) caterpillar tracks
 - 1x Grappler
 - Adjustable head (motor-operated)
 - Sensors: Color, infra red, ultra sonic
- Operating System: LeJOS → Java VM w/ pre-defined API (basic functionalities w/ hw abstraction)

Lab Course: Natural Language Processing in Software Engineering

- Topic: Development of a system for programming in natural language.
- Example/Toy System: Lego Mindstorms Robot
- Learning Objectives
 - Apply knowledge from lecture "Natural Language Processing in Software Engineering" to a live project
 - Develop a NLP pipeline
 - Benchmark and use NLP tools
 - Build a text corpus
 - Build an ontology and build an ontology generator
 - Development of a program detecting semantics in NL text
 - Apply a research methodology
 - Work in a team, use SCRUM
- Why "Natural Language Processing in Software Engineering"?
 - Programming (in NL) is a subset of the lecture
 - We adopt and adapt many techniques and concepts that are being taught in the lecture

Ingredients: Process Model and Learning Objectives

- Process Model: Research Life Cycle (RLC)
- Learning Objectives (excerpt)

No	Objective (Students are able to:)	Level*
O ₁	Perform a literature review for a given topic	L ₂ - L ₄
O ₂	Build up a benchmark for a given problem	L ₄ - L ₆
O ₈	Implement and benchmark a prototype for a given problem at hand	L ₃ - L ₆
O ₁₀	Present their results and insights gained in a concise and precise manner	L ₁ - L ₃

^{*}according to Bloom's taxonomy [AKB2001]

Ingredients: Process Model and Learning Objectives

- Process Model: Research Life Cycle (RLC)
- Learning Objectives
- Programming in natural language (build a NLP pipeline that generates code from text)
 - Tokenize
 - Parse
 - Detect actions
 - **.** . . .
 - Generate code
- Final task: Parcours

Natural Language Processing Pipeline

Tokenize Input & Split Sentences

Part-Of-Speech Tagging & Stemming

Syntactical Parsing

Coreference Analysis

Mapping Text to GIZMO's Java API

Code Generation

1:30 / 2:43

Review Gizmo's technical details and watch it master our parcours https://youtu.be/Z_vt1-imBUE (165 seconds ©)

Didactic Approach

- Assignment = one (or more) pipeline stages
 - Continuous improvement
 - Transparent assessment
- Final presentation = entire pipeline
 - Evaluates fitness of the approach
 - Rewards continuous improvement
- For every stage: "Run" Research Live Cycle (at least) once
 - Repetition intensifies learning effect
 - Shows applicability of life cycle in different contexts, for different types of problems, ...
- Every stage teaches a subset of our learning objectives
 - Technical and methodical skills
 - Some skills are needed at every stage

T'S ALL ABOUT

Course Design & Assignments: NLP Pipeline

15/16 Course

- 2 Teams, 4 students each
 - MSc. students (first year)
 - Self-assigned teams
 - Teams worked self-organized
- 7 Assignments
 - 1 6 weeks
 - 1 3 pipeline stages each
 - 1 2 learning objectives
 - Increasing complexity
- Final presentation
 - 1 parcours per team + 1 parcours by TAs = 3 parcours/stories to solve
 - Team A: fully successful, Team B: struggled with unknown courses

31.08.2017

12

Findings and Lessons Learned

We have had eight participant only!

How to conduct a *proper* Evaluation?

Note: This is a case study...

Findings and Lessons Learned Monitoring **Evaluation** Observations Interviews

Findings and Lessons Learned

Monitoring

Evaluation

Observations

Interviews

Findings and Lessons Learned TASK 1 AND TWO: AD-HOCILL DIFFERENT PERFORMANCE OF TEAMS THEY LIKED THE PROJECT POBO AND NLP LATER: USED FLC **Evaluation** BETTER RESULTSIL **Observations**

Findings and Lessons Learned

"The **robot** was the most interesting thing!"

"The **structure** – the research life cycle and the pipeline – was very helpful!"

"I could definitely imagine [...] to further engage in research."

"Working [...] with the robot was fun!"

"Doing research in the future? Why not?!"

"To be honest, I knew most things before."

"I'm really into NLP. [...] building a full **NLP pipeline** to control a robot was really cool."

"Without the RLC our results would have been worse, I guess."

"Developing a complete system was very motivating."

> "No, [...] we did not use the RLC consistently."

Evaluation

Interviews

Summary

Step 6:
Presentation of Results

Step 2:
Research Questions and
Hypothesis Definition

Step 5: Documentation and Evaluation

Step 3: Research Conception

Step 4: Conduction Program a robot with English prose

Interviews, monitoring and observations

Topic

Project

Evaluation

Thank you

31.08.2017

References

- [BCKM1997] K. Beckman, N. Coulter, S. Khajenoori, and N. R. Mead, "Collaborations: Closing the industry-academia gap", IEEE Software, vol. 14, no. 6, pp. 49{57, Nov. 1997.
- [WR1999] C. Wohlin and B. Regnell, "Achieving industrial relevance in software engineering education", in 12th Conf. on Software Engineering Education and Training, 1999. Proceedings. DUZ Verlags- und Medienhaus GmbH, Mar. 1999, pp. 16 –25.
- [DSTWP2014] M. Daun, A. Salmon, B. Tenbergen, T. Weyer, and K. Pohl, "Industrial case studies in graduate requirements engineering courses: The impact on student motivation", in 2014 IEEE 27th Conf. on Software Engineering Education and Training, Apr. 2014, pp. 3–12.
- [B2005] R. Barnett, "Reshaping the university: new relationships between research, scholarship and teaching". McGraw-Hill Education (UK), 2005.
- [R2007] I. Richardson, "Preparing Students for Software Engineering Research", in 20th Conf. on Software Engineering Education Training, Jul. 2007, pp. 367–367.
- [KB2009] S. Koolmanojwong and B. Boehm, "Using Software Project Courses to Integrate Education and Research: An Experience Report", in 2009 22nd Conf. on Software Engineering Education and Training, Feb. 2009, pp. 26–33.
- [BGBKBBR2016] M. Budde, S. Grebing, E. Burger, M. Kramer, B. Beckert, M. Beigl, and R. Reussner, "Praxis der Forschung: Eine Lehrveranstaltung des forschungsnahen Lehrens und Lernens in der Informatik am KIT", in Neues Handbuch Hochschullehre (NHHL), Feb. 2016, no. A 3.19
- [AKB2001] L. W. Anderson, D. R. Krathwohl, and B. S. Bloom, A Taxonomy for Learning, Teaching, and Assessing: A Revision of Bloom's Taxonomy of Educational Objectives. Longman, 2001.

20